Traffic load identification for bridges is of great significance for overloaded vehicle control as well as the structural management and maintenance in bridge engineering. Unlike the conventional load identification methods that always encounter problems of ill-condition and difficulties in identifying multi parameters simultaneously when solving the motion equations inversely, a novel strategy is proposed based on smart sensing combing intelligent algorithm for real-time traffic load monitoring. An array of lead zirconium titanate sensors is applied to capture the dynamic responses of a beam bridge, while the Long Short-Term Memory (LSTM) neural network is employed to establish the mapping relations between the dynamic responses of the bridge and the traffic load through data mining. The results reveal that, with the real-time strain responses fed into the LSTM network, the speed and magnitude of the moving load may be identified simultaneously with high accuracy when compared to the practically applied load. The current method may facilitate highly efficient identification of the time-varying characteristics of moving loads and may provide a useful tool for long-term traffic load monitoring and traffic control for in-service bridges.
AI-based modeling and data-driven identification of moving load on continuous beams.
基于人工智能的连续梁上移动荷载建模和数据驱动识别
阅读:7
作者:Zhang He, Zhou Yuhui
| 期刊: | Fundamental Research | 影响因子: | 6.300 |
| 时间: | 2023 | 起止号: | 2022 Mar 16; 3(5):796-803 |
| doi: | 10.1016/j.fmre.2022.02.013 | 研究方向: | 人工智能 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
