Elastic properties of Fe-bearing Akimotoite at mantle conditions: Implications for composition and temperature in lower mantle transition zone.

含铁秋本石在地幔条件下的弹性性质:对下地幔过渡带成分和温度的启示

阅读:4
作者:Zhao Yajie, Wu Zhongqing, Hao Shangqin, Wang Wenzhong, Deng Xin, Song Jian
The pyrolite model, which can reproduce the upper-mantle seismic velocity and density profiles, was suggested to have significantly lower velocities and density than seismic models in the lower mantle transition zone (MTZ). This argument has been taken as mineral-physics evidence for a compositionally distinct lower MTZ. However, previous studies only estimated the pyrolite velocities and density along a one-dimension (1D) geotherm and never considered the effect of lateral temperature heterogeneity. Because the majorite-perovskite-akimotoite triple point is close to the normal mantle geotherm in the lower MTZ, the lateral low-temperature anomaly can result in the presence of a significant fraction of akimotoite in pyrolitic lower MTZ. In this study, we reported the elastic properties of Fe-bearing akimotoite based on first-principles calculations. Combining with literature data, we found that the seismic velocities and density of the pyrolite model can match well those in the lower MTZ when the lateral temperature heterogeneity is modeled by a Gaussian distribution with a standard deviation of ∼100 K and an average temperature of dozens of K higher than the triple point of MgSiO(3). We suggest that a harzburgite-rich lower MTZ is not required and the whole mantle convection is expected to be more favorable globally.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。