ATLAS: Machine learning-enhanced filament analysis for the In Vitro Motility Assay.

ATLAS:用于体外运动性测定的机器学习增强型丝状体分析

阅读:5
作者:Duno-Miranda Sebastian, Warshaw David M, Nelson Shane R
The In Vitro Motility Assay (IVMA) is a widely used experimental system to study the chemical and mechanical activity of myosin and other cytoskeletal motor proteins. In the IVMA, myosin molecules are bound to a glass surface and propel fluorescently labeled actin filaments across the surface, which are recorded using video fluorescence microscopy. The length and velocity of the actin filaments offer a measurement of the chemomechanical activity of the myosin motor proteins. Although the assay itself is well suited for high-throughput application, current video analysis approaches are slow, labor intensive, and subject to human bias. To address this shortfall, we introduce ATLAS, an open-source, platform independent software package that utilizes state-of-the-art machine learning algorithms to identify fluorescently labeled actin filaments and then track and analyze their motion in the IVMA. Utilizing both experimental data and a large array of simulated actomyosin motility movies, we demonstrate that ATLAS accurately and efficiently measures both the velocity and length of actin filaments across a broad range of experimental conditions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。