Exocytosis, which mediates important functions like synaptic transmission and stress responses, has been postulated to release all transmitter molecules in the vesicle in the "all-or-none" quantal hypothesis. Challenging this hypothesis, amperometric current recordings of catecholamine release propose that sub-quantal or partial transmitter release is dominant in various cell types, particularly chromaffin cells. The sub-quantal hypothesis predicts that fusion pore closure (kiss-and-run fusion), the cause of sub-quantal release, is dominant, and blocking pore closure increases quantal size. We tested these predictions by imaging fusion pore closure and amperometric recording of catecholamine release in chromaffin cells during high potassium application, the most-used stimulation protocol for sub-quantal release study. We found that fusion pore closure is not predominant, and inhibition of the fusion pore closure does not increase the quantal size calculated from the amperometric current charge when a sufficiently long integration time is used. These results suggest that sub-quantal release is not prevalent during high potassium application in adrenal chromaffin cells.
Sub-quantal release is not dominant during prolonged depolarization in adrenal chromaffin cells.
在肾上腺嗜铬细胞的长时间去极化过程中,亚量子释放并不占主导地位
阅读:11
作者:Wei Lisi, Wang Xin, Sun Min, Shin Wonchul, Gillis Kevin D, Wu Ling-Gang
| 期刊: | Biophysical Reports | 影响因子: | 2.700 |
| 时间: | 2025 | 起止号: | 2025 Jun 11; 5(2):100212 |
| doi: | 10.1016/j.bpr.2025.100212 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
