4-Phenyl-thiazole-based dual inhibitors of fatty acid amide hydrolase and soluble epoxide hydrolase do not alleviate orofacial inflammatory pain in female rats.

4-苯基噻唑类脂肪酸酰胺水解酶和可溶性环氧化物水解酶双重抑制剂不能缓解雌性大鼠的口面部炎症疼痛

阅读:5
作者:Carr Daniel, Chin Christopher, Chacon Tiffany, Herawi Monijeh Khoja, Gonzalez Michael, West Ryan, Morisseau Christophe, Hammock Bruce D, Pecic Stevan, Kandasamy Ram
Pain arising from trigeminal systems such as headache is common, debilitating, and current treatments (e.g., sumatriptan) are limited. New treatments that target novel mechanisms of action may be required to innovate both short- and long-term pain therapy. Fatty acid amide hydrolase and soluble epoxide hydrolase are two pain-related enzymes that regulate pain and inflammation via independent pathways. We have previously demonstrated that simultaneous inhibition of these enzymes using a novel dual inhibitor alleviates acute inflammatory pain in the hindpaw and does not depress wheel running in rats. Here, we expanded on these findings and performed structure-activity relationships of our lead compound, the 4-phenyl-thiazole-based dual inhibitor SW-17, to generate 18 analogs and tested them for their inhibition at both enzymes. Conversion of the sulfonamide group to a tertiary amine led to a general decrease in the potency for the sEH enzyme, while this change was well-tolerated at the FAAH enzyme yielding several strong inhibitors. Six selected inhibitors were evaluated in mouse and rat sEH inhibition assays and results showed a species difference, i.e. 4-phenyl-thiazole-based analogs are significantly less or not active in mouse sEH compared to human and rat enzymes. The most potent inhibitor, SW-17, was evaluated in a plasma stability assay in human and rat plasma and showed moderate stability. However, SW-17 did not alleviate orofacial inflammatory pain in female rats compared to the traditional anti-migraine agent sumatriptan. Although modification of 4-phenyl-thiazole-based dual inhibitor SW-17 changes potencies at both FAAH and sEH, these approaches may not produce antinociception against trigeminal pain. Key Words: polypharmacology, formalin, inflammation, enzyme inhibition, structure-activity relationship studies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。