High-resolution short-term prediction of the COVID-19 epidemic based on spatial-temporal model modified by historical meteorological data.

基于历史气象数据修正的时空模型,对 COVID-19 疫情进行高分辨率短期预测

阅读:4
作者:Chen Bin, Chen Ruming, Zhao Lin, Ren Yuxiang, Zhang Li, Zhao Yingjie, Lian Xinbo, Yan Wei, Gao Shuoyuan
In the global challenge of Coronavirus disease 2019 (COVID-19) pandemic, accurate prediction of daily new cases is crucial for epidemic prevention and socioeconomic planning. In contrast to traditional local, one-dimensional time-series data-based infection models, the study introduces an innovative approach by formulating the short-term prediction problem of new cases in a region as multidimensional, gridded time series for both input and prediction targets. A spatial-temporal depth prediction model for COVID-19 (ConvLSTM) is presented, and further ConvLSTM by integrating historical meteorological factors (Meteor-ConvLSTM) is refined, considering the influence of meteorological factors on the propagation of COVID-19. The correlation between 10 meteorological factors and the dynamic progression of COVID-19 was evaluated, employing spatial analysis techniques (spatial autocorrelation analysis, trend surface analysis, etc.) to describe the spatial and temporal characteristics of the epidemic. Leveraging the original ConvLSTM, an artificial neural network layer is introduced to learn how meteorological factors impact the infection spread, providing a 5-day forecast at a 0.01° × 0.01° pixel resolution. Simulation results using real dataset from the 3.15 outbreak in Shanghai demonstrate the efficacy of Meteor-ConvLSTM, with reduced RMSE of 0.110 and increased R (2) of 0.125 (original ConvLSTM: RMSE = 0.702, R (2) = 0.567; Meteor-ConvLSTM: RMSE = 0.592, R (2) = 0.692), showcasing its utility for investigating the epidemiological characteristics, transmission dynamics, and epidemic development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。