Spatiotemporal information conversion machine for time-series forecasting.

用于时间序列预测的时空信息转换机

阅读:9
作者:Peng Hao, Chen Pei, Liu Rui, Chen Luonan
Making time-series forecasting in a robust way is a difficult task only based on the observed data of a nonlinear system. In this work, a neural network computing framework, the spatiotemporal information conversion machine (STICM), was developed to efficiently and accurately render a forecasting of a time series by employing a spatial-temporal information (STI) transformation. STICM combines the advantages of both the STI equation and the temporal convolutional network, which maps the high-dimensional/spatial data to the future temporal values of a target variable, thus naturally providing the forecasting of the target variable. From the observed variables, the STICM also infers the causal factors of the target variable in the sense of Granger causality, which are in turn selected as effective spatial information to improve the robustness of time-series forecasting. The STICM was successfully applied to both benchmark systems and real-world datasets, all of which show superior and robust performance in time-series forecasting, even when the data were perturbed by noise. From both theoretical and computational viewpoints, the STICM has great potential in practical applications in artificial intelligence or as a model-free method based only on the observed data, and also opens a new way to explore the observed high-dimensional data in a dynamical manner for machine learning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。