Inhibition of Sphingosine Phosphate Receptor 1 Signaling Enhances the Efficacy of VEGF Receptor Inhibition

抑制磷酸鞘氨醇受体 1 信号传导可增强 VEGF 受体抑制的疗效

阅读:7
作者:Anthony S Fischl, Xiaoen Wang, Beverly L Falcon, Rowena Almonte-Baldonado, Diane Bodenmiller, Glenn Evans, Julie Stewart, Takako Wilson, Philip Hipskind, Jason Manro, Mark T Uhlik, Sudhakar Chintharlapalli, Damien Gerald, David C Alsop, Laura E Benjamin, Rupal S Bhatt

Abstract

Inhibition of VEGFR signaling is an effective treatment for renal cell carcinoma, but resistance continues to be a major problem. Recently, the sphingosine phosphate (S1P) signaling pathway has been implicated in tumor growth, angiogenesis, and resistance to antiangiogenic therapy. S1P is a bioactive lipid that serves an essential role in developmental and pathologic angiogenesis via activation of the S1P receptor 1 (S1P1). S1P1 signaling counteracts VEGF signaling and is required for vascular stabilization. We used in vivo and in vitro angiogenesis models including a postnatal retinal angiogenesis model and a renal cell carcinoma murine tumor model to test whether simultaneous inhibition of S1P1 and VEGF leads to improved angiogenic inhibition. Here, we show that inhibition of S1P signaling reduces the endothelial cell barrier and leads to excessive angiogenic sprouting. Simultaneous inhibition of S1P and VEGF signaling further disrupts the tumor vascular beds, decreases tumor volume, and increases tumor cell death compared with monotherapies. These studies suggest that inhibition of angiogenesis at two stages of the multistep process may maximize the effects of antiangiogenic therapy. Together, these data suggest that combination of S1P1 and VEGFR-targeted therapy may be a useful therapeutic strategy for the treatment of renal cell carcinoma and other tumor types.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。