Gene editing facilitated by homology-directed repair represents a promising strategy for precisely correcting pathogenic variants underlying monogenic disorders, including the life-threatening skin blistering condition junctional epidermolysis bullosa (JEB). Frequent reports of unintended off-target genotoxicity associated with conventional Cas9 nuclease editing have increasingly led to the adoption of dual-Cas9 nickases (dual-Cas9n) owing to their improved safety profile. However, rates of precise repair obtained with such strategies remain low. In this study, we establish a dual-Cas9n approach targeting LAMB3, using electroporation to deliver Cas9-nickase ribonucleoproteins and modified single-stranded oligodeoxynucleotide repair templates into primary JEB keratinocytes. Targeting a hotspot pathogenic variant (c.1903C>T, p.R635â), we report perfect correction efficiencies of up to 54% based on standard next-generation sequencing. Using a high-fidelity Cas9 nuclease, we also report perfect repair of up to 74% when using a small-molecule modulator of DNA repair. Dual-Cas9n-corrected JEB keratinocytes demonstrated restored laminin-332 expression and secretion in vitro, leading to improved cellular adhesion and accurate laminin-332 localization in engineered skin equivalents. This protocol represents a significant improvement in precision gene repair using Cas9 nickases for epidermolysis bullosa, with the potential to be applied to a large cohort of patients harboring this prevalent pathogenic variant.
Efficient Dual Cas9 Nickase Correction of a Prevalent Pathogenic LAMB 3 Variant for Junctional Epidermolysis Bullosa.
高效双 Cas9 切口酶校正常见致病性 LAMB 3 变体,用于治疗交界性大疱性表皮松解症
阅读:4
作者:du Rand Alex, Hunt John, Verdon Daniel, Buttle Ben, Dunbar P Rod, Purvis Diana, Feisst Vaughan, Sheppard Hilary
| 期刊: | JID Innovations | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2024 Dec 24; 5(3):100343 |
| doi: | 10.1016/j.xjidi.2024.100343 | 研究方向: | 免疫/内分泌 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
