This paper introduces an innovative approach utilizing Google Colaboratory for the versatile analysis of phasor fluorescence lifetime imaging microscopy (FLIM) data collected from various samples (e.g., cuvette, cells, tissues) and in various input file formats. In fact, phasor-FLIM widespread adoption has been hampered by complex instrumentation and data analysis requirements. We mean to make advanced FLIM analysis more accessible to researchers through a cloud-based solution that 1) harnesses robust computational resources, 2) eliminates hardware limitations, and 3) supports both CPU and GPU processing. We envision a paradigm shift in FLIM data accessibility and potential, aligning with the evolving field of artificial intelligence-driven FLIM analysis. This approach simplifies FLIM data handling and opens doors for diverse applications, from studying cellular metabolism to investigating drug encapsulation, benefiting researchers across multiple domains. The comparative analysis of freely distributed FLIM tools highlights the unique advantages of this approach in terms of adaptability, scalability, and open-source nature.
Phasor identifier: A cloud-based analysis of phasor-FLIM data on Python notebooks.
相量识别器:基于云的 Python notebook 相量 FLIM 数据分析
阅读:3
作者:Bernardi Mario, Cardarelli Francesco
| 期刊: | Biophysical Reports | 影响因子: | 2.700 |
| 时间: | 2023 | 起止号: | 2023 Nov 7; 3(4):100135 |
| doi: | 10.1016/j.bpr.2023.100135 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
