Fundamental Sex Differences in Cocaine-Induced Plasticity of Dopamine D1 Receptor- and D2 Receptor-Expressing Medium Spiny Neurons in the Mouse Nucleus Accumbens Shell.

小鼠伏隔核壳部表达多巴胺 D1 受体和 D2 受体的中型棘状神经元可塑性的可卡因诱导可塑性存在根本的性别差异

阅读:4
作者:Chapp Andrew D, Nwakama Chinonso A, Jagtap Pramit P, Phan Chau-Mi H, Thomas Mark J, Mermelstein Paul G
BACKGROUND: Cocaine-induced plasticity in the nucleus accumbens shell of males occurs primarily in dopamine D(1) receptor-expressing medium spiny neurons (D1R-MSNs), with little if any impact on dopamine D(2) receptor-expressing medium spiny neurons (D2R-MSNs). In females, the effect of cocaine on accumbens shell D1R- and D2R-MSN neurophysiology has yet to be reported, nor have estrous cycle effects been accounted for. METHODS: We used a 5-day locomotor sensitization paradigm followed by a 10- to 14-day drug-free abstinence period. We then obtained ex vivo whole-cell recordings from fluorescently labeled D1R-MSNs and D2R-MSNs in the nucleus accumbens shell of male and female mice during estrus and diestrus. We examined accumbens shell neuronal excitability as well as miniature excitatory postsynaptic currents (mEPSCs). RESULTS: In females, we observed alterations in D1R-MSN excitability across the estrous cycle similar in magnitude to the effects of cocaine in males. Furthermore, cocaine shifted estrous cycle-dependent plasticity from intrinsic excitability changes in D1R-MSNs to D2R-MSNs. In males, cocaine treatment produced the anticipated drop in D1R-MSN excitability with no effect on D2R-MSN excitability. Cocaine increased mEPSC frequencies and amplitudes in D2R-MSNs from females in estrus and mEPSC amplitudes of D2R-MSNs from females in diestrus. In males, cocaine increased both D1R- and D2R-MSN mEPSC amplitudes with no effect on mEPSC frequencies. CONCLUSIONS: Overall, while there are similar cocaine-induced disparities regarding the relative excitability of D1R-MSNs versus D2R-MSNs between the sexes, this is mediated through reduced D1R-MSN excitability in males, whereas it is due to heightened D2R-MSN excitability in females.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。