Characterizing hydrogen bonds in intact RNA from MS2 bacteriophage using magic angle spinning NMR.

利用魔角旋转核磁共振技术表征MS2噬菌体完整RNA中的氢键

阅读:3
作者:Lusky Orr Simon, Meir Moran, Goldbourt Amir
RNA is a polymer with pivotal functions in many biological processes. RNA structure determination is thus a vital step toward understanding its function. The secondary structure of RNA is stabilized by hydrogen bonds formed between nucleotide basepairs, and it defines the positions and shapes of functional stem-loops, internal loops, bulges, and other functional and structural elements. In this work, we present a methodology for studying large intact RNA biomolecules using homonuclear (15)N solid-state NMR spectroscopy. We show that proton-driven spin-diffusion experiments with long mixing times, up to 16 s, improved by the incorporation of multiple rotor-synchronous (1)H inversion pulses (termed radio-frequency dipolar recoupling pulses), reveal key hydrogen-bond contacts. In the full-length RNA isolated from MS2 phage, we observed strong and dominant contributions of guanine-cytosine Watson-Crick basepairs, and beyond these common interactions, we observe a significant contribution of the guanine-uracil wobble basepairs. Moreover, we can differentiate basepaired and non-basepaired nitrogen atoms. Using the improved technique facilitates characterization of hydrogen-bond types in intact large-scale RNA using solid-state NMR. It can be highly useful to guide secondary structure prediction techniques and possibly structure determination methods.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。