Finite-Element Modeling of the Hysteresis Behavior of Tetragonal and Rhombohedral Polydomain Ferroelectroelastic Structures.

四方和菱方多畴铁电弹性结构滞后行为的有限元建模

阅读:4
作者:Lobanov Sviatoslav M, Semenov Artem S
The influence of the domain structure's initial topology and its evolution on the hysteresis curves of tetragonal and rhombohedral polydomain structures of ferroelectroelastic materials is studied. Based on the analysis of electrical and mechanical compatibility conditions, all possible variants of representative volume elements of tetragonal and rhombohedral second-rank-domain laminate structures were obtained and used in simulations. Considerable local inhomogeneity of stress and electric fields within the representative volume, as well as domain interaction, necessitates the use of numerical methods. Hysteresis curves for laminated domain patterns of the second rank were obtained using finite-element homogenization. The vector-potential finite-element formulation as the most effective method was used for solving nonlinear coupled boundary value problems of ferroelectroelasticity. A significant anisotropy of the hysteresis properties of domain structures was established both within individual phases and when comparing the tetragonal and rhombohedral phases. The proposed approach describes the effects of domain hardening and unloading nonlinearity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。