Despite extensive research, the gene regulatory architecture governing mammalian cell states remains poorly understood. Here we present an integrative systems biology approach to elucidate the network architecture of primed state pluripotency. Using an unbiased methodology, we identified and experimentally confirmed 132 transcription factors as master regulators (MRs) of mouse epiblast stem cell (EpiSC) pluripotency, many of which were further validated by CRISPR-mediated functional assays. To assemble a comprehensive regulatory network, we silenced each of the 132 MRs to assess their effects on the other MRs and their transcriptional targets, yielding a network of 1273 MRâââMR interactions. Network architecture analyses revealed four functionally distinct MR modules (communities), and identified key Speaker and Mediator MRs based on their hierarchical rank and centrality. Our findings elucidate the de-centralized logic of a "communal interaction" model in which the balanced activities of four MR communities maintain primed state pluripotency.
The regulatory architecture of the primed pluripotent cell state.
启动多能细胞状态的调控架构
阅读:7
作者:Li Bo I, Alvarez Mariano J, Zhao Hui, Chirathivat Napon, Califano Andrea, Shen Michael M
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Apr 9; 16(1):3351 |
| doi: | 10.1038/s41467-025-57894-4 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
