Microdissection and Single-Cell Suspension of Neocortical Layers From Ferret Brain for Single-Cell Assays

利用雪貂脑新皮层进行显微解剖和单细胞悬浮,用于单细胞分析

阅读:1
作者:Lucia Del-Valle-Anton ,Salma Amin ,Víctor Borrell

Abstract

Brain development is highly complex and dynamic. During this process, the different brain structures acquire new components, such as the cerebral cortex, which builds up different germinal and cortical layers during its development. The genetic study of this complex structure has been commonly approached by bulk-sequencing of the entire cortex as a whole. Here, we describe the methodology to study this layered tissue in all its complexity by microdissecting two germinal layers at two developmental time points. This protocol is combined with a step-by-step explanation of tissue dissociation that provides high-quality cells ready to be analyzed by the newly developed single-cell assays, such as scRNA-seq, scATAC-seq, and TrackerSeq. Altogether, this approach increases the resolution of the genetic analyses from the cerebral cortex compared to bulk studies. It also facilitates the study of laboratory animal models that recapitulate human cortical development better than mice, like ferrets. Key features • Microdissection of individual germinal layers in the developing cerebral cortex from living brain slices. • Enzymatic and mechanical dissociation generates single-cell suspensions available for high-throughput single-cell assays. • Protocol optimized for embryonic and early postnatal ferret cortex. Keywords: Cell concentration; Cell viability; Cerebral cortex; Ferret; Lateral sulcus; Microdissection; Outer subventricular zone; Single-cell suspension; Splenial gyrus; Ventricular zone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。