Development of Thermo-Responsive and Salt-Adaptive Ultrafiltration Membranes Functionalized with PNIPAM-co-PDMAC Copolymer.

开发采用PNIPAM-co-PDMAC共聚物功能化的热响应和盐适应性超滤膜

阅读:15
作者:Mama Lauran, Pirkin-Benameur Johanne, Bouad Vincent, Fournier David, Woisel Patrice, Lyskawa Joël, Aissou Karim, Quemener Damien
Access to clean water remains a critical global challenge, exacerbated by population growth, industrial activity, and climate change. In response, this study presents the development and characterization of thermo-responsive and salt-adaptive ultrafiltration membranes functionalized with a poly(N-isopropylacrylamide)-co-poly(dimethylacrylamide) (PNIPAM-co-PDMAC) copolymer. By combining the thermo-responsive properties of PNIPAM with the hydrophilic characteristics of PDMAC, these membranes exhibit dual-stimuli responsiveness to temperature and ionic strength, allowing for precise control of permeability and fouling resistance. The experimental results demonstrated that the copolymer's hydration state and dynamic pore size modulation are sensitive to changes in salinity and temperature, with sodium chloride (NaCl) significantly influencing the transition behavior. Preliminary fouling tests confirmed the antifouling capabilities of these membranes, with salt-triggered hydration transitions effectively reducing irreversible fouling and extending membrane durability. The membranes' reversible properties and adaptability to dynamic operating conditions highlight their potential to enhance the efficiency and sustainability of water treatment processes. Future investigations will focus on scaling up the fabrication process and assessing the long-term stability of these membranes under real-world conditions. This study underscores the promise of smart membrane systems for advancing global water sustainability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。