A Population of Interneurons Signals Changes in the Basal Concentration of Serotonin and Mediates Gain Control in the Drosophila Antennal Lobe.

一群中间神经元发出信号,改变血清素的基础浓度,并介导果蝇触角叶的增益控制

阅读:3
作者:Suzuki Yoshinori, Schenk Jonathan E, Tan Hua, Gaudry Quentin
Serotonin (5-HT) represents a quintessential neuromodulator, having been identified in nearly all animal species [1] where it functions in cognition [2], motor control [3], and sensory processing [4]. In the olfactory circuits of flies and mice, serotonin indirectly inhibits odor responses in olfactory receptor neurons (ORNs) via GABAergic local interneurons (LNs) [5, 6]. However, the effects of 5-HT in olfaction are likely complicated, because multiple receptor subtypes are distributed throughout the olfactory bulb (OB) and antennal lobe (AL), the first layers of olfactory neuropil in mammals and insects, respectively [7]. For example, serotonin has a non-monotonic effect on odor responses in Drosophila projection neurons (PNs), where low concentrations suppress odor-evoked activity and higher concentrations boost PN responses [8]. Serotonin reaches the AL via the diffusion of paracrine 5-HT through the fly hemolymph [8] and by activation of the contralaterally projecting serotonin-immunoreactive deuterocerebral interneurons (CSDns): the only serotonergic cells that innervate the AL [9, 10]. Concentration-dependent effects could arise by either the expression of multiple 5-HT receptors (5-HTRs) on the same cells or by populations of neurons dedicated to detecting serotonin at different concentrations. Here, we identify a population of LNs that express 5-HT7Rs exclusively to detect basal concentrations of 5-HT. These LNs inhibit PNs via GABA(B) receptors and mediate subtractive gain control. LNs expressing 5-HT7Rs are broadly tuned to odors and target every glomerulus in the antennal lobe. Our results demonstrate that serotonergic modulation at low concentrations targets a specific population of LNs to globally downregulate PN odor responses in the AL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。