Monocyte-derived macrophages (MoMacs) are the most important effector cells that cause pulmonary fibrosis. However, the characteristics of MoMac differentiation in silicosis and the mechanisms by which MoMacs affect the progression of pulmonary fibrosis remain unclear. Integration of single-cell and spatial transcriptomic analyses revealed that the silicosis niche was occupied by a subset of MoMacs, identified as Spp1(hi)Macs, which remain in an immature transitional state of differentiation during silicosis. This study investigated the mechanistic foundations of mitochondrial damage induced by the lipoprotein-associated phospholipase A2 (Lp-PLA2, encoded by Pla2g7)-acyl-CoA:lysocardiolipin acyltransferase-1 (ALCAT1)-cardiolipin (CL) signaling pathway, which interferes with Spp1(hi)Mac differentiation. We demonstrated that in SiO(2)-induced MoMacs, Lp-PLA2 induces abnormal CL acylation through the activation of ALCAT1, resulting in impaired mitochondrial localization of PINK1 and LC3B and mitochondrial autophagy defects. Simultaneously, lysosomal dysfunction causes the release of the lysosomal protein cathepsin B into the cytoplasm, which involves M1 and M2 macrophage polarization and the activation of proinflammatory and profibrotic pathways. Furthermore, we assessed the efficacy of the Lp-PLA2 inhibitor darapladib in ameliorating silica-induced pulmonary fibrosis in a murine model. Our findings enhance our understanding of silicosis pathogenesis and offer promising opportunities for developing targeted therapies to mitigate fibrotic progression and maintain lung function in affected individuals.
Targeting Lp-PLA2 inhibits profibrotic monocyte-derived macrophages in silicosis through restoring cardiolipin-mediated mitophagy.
靶向 Lp-PLA2 可通过恢复心磷脂介导的线粒体自噬来抑制矽肺中的促纤维化单核细胞衍生的巨噬细胞
阅读:24
作者:Li Shifeng, Xu Hong, Liu Shupeng, Hou Jinkun, Han Yueyin, Li Chen, Li Yupeng, Zheng Gaigai, Wei Zhongqiu, Yang Fang, Gao Shuwei, Wang Shiyao, Geng Jing, Dai Huaping, Wang Chen
| 期刊: | Cellular & Molecular Immunology | 影响因子: | 19.800 |
| 时间: | 2025 | 起止号: | 2025 Jul;22(7):776-790 |
| doi: | 10.1038/s41423-025-01288-5 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
