Thiamin, an essential micronutrient, is a cofactor for enzymes involved in the central carbon metabolism and amino acid pathways. Despite efforts to enhance thiamin content in rice by incorporating thiamin biosynthetic genes, increasing thiamin content in the endosperm remains challenging, possibly due to a lack of thiamin stability and/or a local sink. The introduction of storage proteins has been successful in several biofortification strategies, and similar efforts targeting thiamin have been performed, leading to a 3-4-fold increase in white rice. However, only one thiamin-binding protein (TBP) sequence has been described in plants, more specifically from sesame seeds. Therefore, we aimed to identify and characterize TBPs, as well as to evaluate the effect of their expression on thiamin concentration, using a comprehensive approach integrating in silico, in vitro, and in vivo methods. We identified the sequences of putative TBPs from Oryza sativa (Os, rice), Fagopyrum esculentum (Fe, buckwheat), and Zea mays (Zm, maize) and pinpointed the thiamin-binding pockets through molecular docking. FeTBP and OsTBP contained one pocket with binding affinities similar to the Escherichia coli TBP, a well-characterized TBP, supporting their function as TBPs. In vivo expression studies of TBPs in tobacco leaves and rice callus resulted in increased thiamin levels, with FeTBP and OsTBP showing the most pronounced effects. Additionally, thermal shift assays confirmed the thiamin-binding capabilities of FeTBP and OsTBP, as observed by the significant increases in melting temperatures upon thiamin binding, indicating protein stabilization. These findings offer new insights into the diversity and function of plant TBPs and highlight the potential of FeTBP and OsTBP to modulate thiamin levels in crop plants.
In silico, in vitro, and in vivo characterization of thiamin-binding proteins from plant seeds.
对植物种子中硫胺素结合蛋白进行计算机模拟、体外和体内表征
阅读:5
作者:Faustino Maria, Strobbe Simon, Sanchez-Muñoz Raul, Cao Da, Mishra Ratnesh C, Lourenço Tiago, Oliveira M Margarida, Van Der Straeten Dominique
| 期刊: | Biochemical Journal | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 Feb 5; 482(4):181-95 |
| doi: | 10.1042/BCJ20240429 | 研究方向: | 免疫/内分泌 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
