Inhibition of progesterone receptor activity during development increases reelin-immunoreactivity in Cajal-Retzius cells, alters synaptic innervation in neonatal dentate gyrus, and impairs episodic-like memory in adulthood.

发育过程中孕酮受体活性的抑制会增加 Cajal-Retzius 细胞中 reelin 免疫反应性,改变新生儿齿状回的突触支配,并损害成年后的情景记忆

阅读:15
作者:Newell Andrew J, Chung Sung Hwan, Wagner Christine K
Progesterone receptor (PR) is expressed in Cajal-Retzius (CR) cells of the dentate gyrus (DG) molecular layer during the postnatal period (P1-28), a critical stage of development for the dentate gyrus and its circuitry. CR cells secrete the glycoprotein, reelin, which is required for typical development of the DG and its connections, particularly afferent input from the perforant path. This pathway regulates the processing of sensory information arriving from entorhinal cortex and integrates this information to form episodic memories. To assess the potential role of PR activity on the development of these connections and associated behavior, rats were treated daily from P1 to 7 with the PR antagonist, RU486. RU486 treatment increased the number of reelin-ir cells, suggesting an accumulation of reelin, and implicating PR in the regulation of a principle developmental function of CR cells. RU486 also altered the synaptic bouton marker, synaptophysin-ir, in a sex-specific manner, suggesting a role for PR activity in the development of perforant path innervation of the molecular layer (MOL). Finally, both control and RU486 treated rats spent significantly more time with a temporally distant object in the Relative Recency task, suggesting an intact associative memory for object identity and temporal order in both groups. In contrast, the same RU486 treated rats were impaired in an episodic-like memory task compared to controls, failing to integrate object identity ('what'), time ('when'), and object position ('where'). These findings reveal a novel role for PR in regulating CR cell function within the MOL, thereby altering development of DG connectivity and behavioral function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。