Simvastatin Enhances the Cytotoxic Effects of Doxorubicin in a Mammary Adenocarcinoma Cell Model by Involving Connexin 43.

辛伐他汀通过连接蛋白 43 增强阿霉素在乳腺腺癌细胞模型中的细胞毒性作用

阅读:5
作者:Vitale Roberta, Marzocco Stefania, Popolo Ada
Gap Junctions channels formed by Connexins (Cx) provide intercellular communication enabling the coordination of cell growth, differentiation, and metabolism, and their reduction has been shown in many tumor types. Expression levels of Cx43, the most extensively studied Gap Junctions forming protein, are reduced or completely absent in breast cancer cells, while their overexpression correlates with increased cellular permeability to anticancer agents and, consequently, reduced resistance to drug treatments. So, drug associations targeting Cx43 are being considered to overcome chemoresistance. Previous studies demonstrated that Simvastatin (Sim) interferes with Cx43 expression and localization, and chemo-sensitizing effects of Sim in several tumor cell lines treated with antineoplastic chemotherapeutics have been shown. This study aimed to evaluate whether Sim cotreatment enhances Doxorubicin-induced cytotoxicity by affecting Cx43 expression and/or phosphorylation, so MCF-7 cells were treated with Sim (10 µM) for 4 h and then coexposed to Sim and Doxorubicin (1 µM) for 20 h. In Sim cotreated cells, increased membrane levels of Cx43 have been shown; moreover, decreased levels of Cx43 phosphorylated on Ser368 and Ser262 residues, involved in channel closure and disruption of cell-cell communication, have been demonstrated in these cells. In Sim cotreated cells increased Doxorubicin uptake and enhanced Doxorubicin-induced cytotoxic effects have been demonstrated together with reduced migratory capacity. Our data support the notion that Sim cotreatment could be a possible strategy to overcome chemoresistance, since the observed increase in Cx43 membrane levels, and the concomitant reduction of Cx43 phosphorylation, could be responsible for increased sensitization of cells to Doxorubicin treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。