An effluent pump family distributed across plant commensal bacteria conditions host- and organ-specific glucosinolate detoxification.

分布于植物共生细菌中的污水泵家族,满足宿主和器官特异性的硫代葡萄糖苷解毒条件

阅读:4
作者:Russ Dor, Fitzpatrick Connor R, Saha Chinmay, Law Theresa F, Jones Corbin D, Kliebenstein Daniel J, Dangl Jeffery L
In nature, plants recruit a diverse microbial community, the plant microbiome, that is distinct from the surrounding soil community. To understand the forces that shape the plant microbiome we need to characterize the microbial traits that contribute to plant colonization. We used barcoded mutant libraries to identify bacterial genes that contribute to the colonization of a monocot and a eudicot host. We show that plant colonization is influenced by dozens of genes. While some of these colonization genes were shared between the two host plant species, most were highly specific, benefiting the colonization of a single host and organ. We characterized an efflux pump that specifically contributes to Arabidopsis shoot colonization. This efflux pump is prevalent across Pseudomonadota genomes yet benefits the bacterial association with only a small subset of Arabidopsis thaliana accessions. Leveraging genomic diversity within Arabidopsis thaliana, we confirmed that specific glucosinolate breakdown products are detoxified by this family of efflux pumps. The broad prevalence of this efflux pump family suggests that its members contribute to protection of commensal bacteria from collateral damage of plant glucosinolate-based defense responses to herbivores and necrotrophic pathogens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。