Serum proteomic study on EGFR-TKIs target treatment for patients with NSCLC.

血清蛋白质组学研究EGFR-TKIs靶向治疗NSCLC患者

阅读:5
作者:Wu Xuan, Liang Wenhua, Hou Xue, Lin Zhong, Zhao Hongyun, Huang Yan, Fang Wenfeng, Zhao Yuanyuan, Wu Jingxun, Yang Yunpeng, Xue Chong, Hu Zhihuang, Zhang Jing, Zhang Jianwei, Ma Yuxiang, Zhou Ting, Qin Tao, Zhang Li
BACKGROUND: Although epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are widely used for EGFR mutated non-small-cell lung cancer (NSCLC) patients, tumor sample availability and heterogeneity of the tumor remain challenging for physicians' selection of these patients. Here, we developed a serum proteomic classifier based on matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) to predict the clinical outcome of patients treated with EGFR-TKIs. METHOD: A total of 68 patients were included in this study. All patients received EGFR-TKIs as second or third line treatment and blood samples were collected before treatment. Using magnetic bead assisted serum peptide capture coupled to MALDI-TOF-MS, pretreatment serum from 24 NSCLC patients was analyzed to develop a proteomic classifier (training set). In a blinded test set with 44 patients, each sample was classified into "good" or "poor" groups using this classifier. Survival analysis of each group was done based on this classification. RESULT: A 3-peptide proteomic classifier was developed from the training set. In the testing set, the classifier was able to distinguish patients of "good" or "poor" outcomes with 93% accuracy, sensitivity, and specificity. The overall survival and progression free survival of the predicted good group were found to be significantly longer than the poor group, not only in the whole population but also in certain subgroups, such as pathological adenocarcinoma and nonsmokers. With respect to the tumor samples available for EGFR mutation detection, all eight EGFR mutant tumors and three of the 12 wild type EGFR tumors were classified as good while nine of the 12 wild type EGFR tumors were classified as poor. CONCLUSION: The current study has shown that a proteomic classifier can predict the outcome of patients treated with EGFR-TKIs and may aid in patient selection in the absence of available tumor tissue. Further studies are necessary to confirm these findings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。