Effects of ligand binding on the stability of aldo-keto reductases: Implications for stabilizer or destabilizer chaperones.

配体结合对醛酮还原酶稳定性的影响:对稳定剂或不稳定剂伴侣蛋白的启示

阅读:5
作者:Kabir Aurangazeb, Honda Ryo P, Kamatari Yuji O, Endo Satoshi, Fukuoka Mayuko, Kuwata Kazuo
Ligands such as enzyme inhibitors stabilize the native conformation of a protein upon binding to the native state, but some compounds destabilize the native conformation upon binding to the non-native state. The former ligands are termed "stabilizer chaperones" and the latter ones "destabilizer chaperones." Because the stabilization effects are essential for the medical chaperone (MC) hypothesis, here we have formulated a thermodynamic system consisting of a ligand and a protein in its native- and non-native state. Using the differential scanning fluorimetry and the circular dichroism varying the urea concentration and temperature, we found that when the coenzyme NADP(+) was absent, inhibitors such as isolithocholic acid stabilized the aldo-keto reductase AKR1A1 upon binding, which showed actually the three-state folding, but destabilized AKR1B10. In contrast, in the presence of NADP(+) , they destabilized AKR1A1 and stabilized AKR1B10. To explain these phenomena, we decomposed the free energy of stabilization (ΔΔG) into its enthalpy (ΔΔH) and entropy (ΔΔS) components. Then we found that in a relatively unstable protein showing the three-state folding, native conformation was stabilized by the negative ΔΔH in association with the negative ΔΔS, suggesting that the stabilizer chaperon decreases the conformational fluctuation of the target protein or increase its hydration. However, in other cases, ΔΔG was essentially determined by the delicate balance between ΔΔH and ΔΔS. The proposed thermodynamic formalism is applicable to the system including multiple ligands with allosteric interactions. These findings would promote the development of screening strategies for MCs to regulate the target conformations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。