Zebrafish crocc2 mutants exhibit divergent craniofacial shape, misregulated variability, and aberrant cartilage morphogenesis.

斑马鱼 crocc2 突变体表现出不同的颅面形状、失调的变异性和异常的软骨形态发生

阅读:3
作者:Packard Mary C, Gilbert Michelle C, Tetrault Emily, Albertson R Craig
BACKGROUND: Phenotypic variation is of paramount importance in development, evolution, and human health; however, the molecular mechanisms that influence organ shape and shape variability are not well understood. During craniofacial development, the behavior of skeletal precursors is regulated by both biochemical and environmental inputs, and the primary cilia play critical roles in transducing both types of signals. Here, we examine a gene that encodes a key constituent of the ciliary rootlets, crocc2, and its role in cartilage morphogenesis in larval zebrafish. RESULTS: Geometric morphometric analysis of crocc2 mutants revealed altered craniofacial shapes and expanded variation. At the cellular level, we observed altered chondrocyte shapes and planar cell polarity across multiple stages in crocc2 mutants. Notably, cellular defects were specific to areas that experience direct mechanical input. Cartilage cell number, apoptosis, and bone patterning were not affected in crocc2 mutants. CONCLUSIONS: Whereas "regulatory" genes are widely implicated in patterning the craniofacial skeleton, genes that encode "structural" aspects of the cell are increasingly implicated in shaping the face. Our results add crocc2 to this list, and demonstrate that it affects craniofacial geometry and canalizes phenotypic variation. We propose that it does so via mechanosensing, possibly through the ciliary rootlet. If true, this would implicate a new organelle in skeletal development and evolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。