Humans are exposed to phthalates, a class of endocrine-disrupting chemicals used in food packaging/processing, PVC plastics, and personal care products. Gestational exposure may lead to adverse neurodevelopmental outcomes. In a rat model, perinatal exposure to an environmentally relevant mixture and dose of phthalates leads to increased developmental apoptosis in the medial prefrontal cortex (mPFC) and a subsequent reduction in neurons and in cognitive flexibility measured in adults of both sexes (Sellinger et al., 2021b; Kougias et al., 2018b). However, whether these effects generalize to other cognitive regions, like the hippocampus, is less well understood as existing studies used single phthalates at large doses, unrepresentative of human exposure. In the current study, patterns of naturally occurring cell death were first established in the dorsal and ventral hippocampal subfields (CA3 and CA1). Both dorsal and ventral CA3 reached high levels of cell death on P2 while levels in dorsal and ventral CA1 peaked on P5 in both sexes. Exposure to a phthalate mixture (0.2 and 1Â mg/kg/day) throughout gestation through postnatal day 10 resulted in subtle age- and region-specific decreases in developmental cell death, however there were no significant changes in adult neuron number or associated behaviors: the Morris water maze and social recognition. Therefore, perinatal exposure to a low dose mixture of phthalates does not result in the dramatic structural and behavioral changes seen with high doses of single phthalates. This study also adds to our understanding of the distinct neurodevelopmental effects of phthalates on different brain regions.
Region- and age-specific effects of perinatal phthalate exposure on developmental cell death and adult anatomy of dorsal and ventral hippocampus and associated cognitive behaviors.
围产期邻苯二甲酸酯暴露对发育细胞死亡和成年背侧和腹侧海马解剖结构及相关认知行为的区域和年龄特异性影响
阅读:5
作者:Sellinger Elli P, Brinks Amara S, Javeri Rajvi R, Theurer Savannah L, Wang Ruibin, Juraska Janice M
| 期刊: | Neurotoxicology and Teratology | 影响因子: | 2.800 |
| 时间: | 2023 | 起止号: | 2023 Sep-Oct;99:107288 |
| doi: | 10.1016/j.ntt.2023.107288 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
