Biphasic Regulation of Apoptosis Following Gastric Irreversible Electroporation Using Tissue Immunohistochemistry of Activated Caspase-3 with TUNEL Method.

利用 TUNEL 法对活化 Caspase-3 进行组织免疫组织化学染色,研究胃不可逆电穿孔后细胞凋亡的双相调控

阅读:4
作者:Jeon Han Jo, Chun Hoon Jai, Choi Hyuk Soon, Keum Bora, Kim Hong Bae, Kim Jong Hyuk
The regulation of apoptosis is the primary goal of ablation therapy. Irreversible electroporation (IRE) is a promising non-thermal tissue ablation-based therapy that induces apoptosis by manipulating electrical conditions. This study aimed to investigate IRE-induced gastric tissue apoptosis in response to changes in the electric field intensity, followed by the repair process. Among the 52 rats used in this study, 24 were used to explore apoptosis, and 28 were used to study regeneration. The apoptosis-to-necrosis ratio of the electrical field strength was evaluated using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and caspase-3 immunohistochemistry. The size of IRE-induced ulcers in the gastric tissue continuously increased with increasing electrical intensity (r(2) = 0.830, p < 0.001). The level of apoptosis gradually decreased after peaking at 200 V (1000 V/cm). The size of the 400 V-ablated ulcers continued to decrease, and they were not visible by day 14. The proliferation and migration of epithelial cells with fibroblasts were observed on day 3 and augmented on day 7 post-ablation. This investigation demonstrated the biphasic activation of apoptosis with respect to the electrical field strength. Visually and histologically, IRE-induced gastric ulcers demonstrated complete tissue regeneration after two weeks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。