Preconditioning neuroprotection in global cerebral ischemia involves NMDA receptor-mediated ERK-JNK3 crosstalk.

全脑缺血的预处理神经保护涉及 NMDA 受体介导的 ERK-JNK3 串扰

阅读:4
作者:Zhang Quan-Guang, Wang Rui-Min, Han Dong, Yang Li-Cai, Li Jie, Brann Darrell W
Previous work has demonstrated that ischemic preconditioning neuroprotection is associated with inhibition of JNK pathway activation. The present study was designed to examine the hypothesis that the suppression of JNK3 activation by preconditioning is mediated by NMDA receptors and crosstalk between ERK1/2 and JNK3. Preconditioning (3 min ischemia) 2 days before global cerebral ischemia (8-min) markedly decreased neuronal degeneration in hippocampus CA1, an effect abolished by pretreatment with the NMDA receptor antagonist, MK-801. Furthermore, preconditioning abolished cerebral ischemia-induced JNK3 activation and enhanced ERK1/2 activation, an effect reversed by MK-801. Due to the inverse relationship between ERK1/2 and JNK3 activation following preconditioning, we hypothesized that ERK1/2 may regulate JNK3 activation following preconditioning. In support of this contention, pretreatment with the MEK inhibitor, PD98059 significantly attenuated preconditioning-induced ERK1/2 phosphorylation, and strongly reversed preconditioning down-regulation of JNK3 phosphorylation. This finding suggests that ERK1/2 signaling is responsible for preconditioning-induced down-regulation of JNK3 activation. Western blot analysis and immunohistochemistry further demonstrated that preconditioning, in an NMDA-dependent manner, enhanced activation of the pro-survival factors, p-CREB and Bcl-2, while attenuating activation of putative pro-death factors, p-c-Jun and Fas-L in the hippocampus CA1. As a whole, the study demonstrates that preconditioning attenuation of pro-death JNK3 in the hippocampus CA1 following global cerebral ischemia is mediated by NMDA receptor-induced crosstalk between ERK1/2 and JNK3. The ERK1/2-mediated reduction of JNK3 activation leads to enhanced pro-survival signaling (P-CREB and Bcl-2 induction) and attenuation of pro-death signaling (p-c-Jun and Fas-L), with subsequent induction of ischemic tolerance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。