CKAP2L Promotes Esophageal Squamous Cell Carcinoma Progression and Drug-Resistance by Modulating Cell Cycle

CKAP2L通过调节细胞周期促进食管鳞状细胞癌进展和耐药性

阅读:13
作者:Wenhu Chen, Yu Wang, Lifang Wang, Hongguang Zhao, Xiaoyan Li

Abstract

Esophageal squamous cell carcinoma (ESCC) is one of the most common types of cancer and the leading cause of cancer-related mortality worldwide, especially in Asia. In this study, the gene CKAP2L was selected by GEO, TCGA, and GTEx database analysis. The high expression of CKAP2L is related to the occurrence and development of ESCC. In addition, CKAP2L knockdown can inhibit the growth and migration of ESCC cells, while CKAP2L overexpression has the opposite effect. Furthermore, in vivo experiments indicated that down-regulation of CKAP2L can inhibit the tumorigenesis of ESCC cells. KEGG pathway analysis and the STRING database explored the relationship between cell cycle and CKAP2L and verified that depletion of CKAP2L markedly arrested cell cycle in the G2/M phase. Meanwhile, CKAP2L knockdown increased the sensitivity of ESCC cells to flavopiridol, the first CDK inhibitor to be tested in clinical trials, leading to an observable reduction in cell proliferation and an increase in cellular apoptosis. In brief, we identified CKAP2L as a tumor promoter, potential prognostic indicator, and therapeutic target of ESCC, which may play a role in regulating cell cycle progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。