Deep Learning-Based Identification of Intraocular Pressure-Associated Genes Influencing Trabecular Meshwork Cell Morphology.

基于深度学习的眼内压相关基因识别及其对小梁网细胞形态的影响

阅读:6
作者:Greatbatch Connor J, Lu Qinyi, Hung Sandy, Tran Son N, Wing Kristof, Liang Helena, Han Xikun, Zhou Tiger, Siggs Owen M, Mackey David A, Liu Guei-Sheung, Cook Anthony L, Powell Joseph E, Craig Jamie E, MacGregor Stuart, Hewitt Alex W
PURPOSE: Genome-wide association studies have recently uncovered many loci associated with variation in intraocular pressure (IOP). Artificial intelligence (AI) can be used to interrogate the effect of specific genetic knockouts on the morphology of trabecular meshwork cells (TMCs) and thus, IOP regulation. DESIGN: Experimental study. SUBJECTS: Primary TMCs collected from human donors. METHODS: Sixty-two genes at 55 loci associated with IOP variation were knocked out in primary TMC lines. All cells underwent high-throughput microscopy imaging after being stained with a 5-channel fluorescent cell staining protocol. A convolutional neural network was trained to distinguish between gene knockout and normal control cell images. The area under the receiver operator curve (AUC) metric was used to quantify morphological variation in gene knockouts to identify potential pathological perturbations. MAIN OUTCOME MEASURES: Degree of morphological variation as measured by deep learning algorithm accuracy of differentiation from normal controls. RESULTS: Cells where LTBP2 or BCAS3 had been perturbed demonstrated the greatest morphological variation from normal TMCs (AUC 0.851, standard deviation [SD] 0.030; and AUC 0.845, SD 0.020, respectively). Of 7 multigene loci, 5 had statistically significant differences in AUC (P < 0.05) between genes, allowing for pathological gene prioritization. The mitochondrial channel most frequently showed the greatest degree of morphological variation (33.9% of cell lines). CONCLUSIONS: We demonstrate a robust method for functionally interrogating genome-wide association signals using high-throughput microscopy and AI. Genetic variations inducing marked morphological variation can be readily identified, allowing for the gene-based dissection of loci associated with complex traits. FINANCIAL DISCLOSURES: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。