Methods to efficiently determine the phase behavior of novel proteins have the potential to significantly benefit structural biology efforts. Here, we present protocols to determine both the solubility boundary and the supersolubility boundary for protein/precipitant systems using an evaporation-based crystallization platform. This strategy takes advantage of the well-defined rates of evaporation that occur in this platform to determine the state of the droplet at any point in time without relying on an equilibrium-based end point. The dynamic nature of this method efficiently traverses phase space along a known path, such that a solubility diagram can be mapped out for both soluble and membrane proteins while using a smaller amount of protein than what is typically used in optimization screens. Furthermore, a variation on this method can be used to decouple crystal nucleation and growth events, so fewer and larger crystals can be obtained within a given droplet. The latter protocol can be used to rescue a crystallization trial where showers of tiny crystals were observed. We validated both of the protocols to determine the phase behavior and the protocol to optimize crystal quality using the soluble proteins lysozyme and ribonuclease A as well as the membrane protein bacteriorhodopsin.
Determination of the phase diagram for soluble and membrane proteins.
可溶性蛋白和膜蛋白相图的测定
阅读:9
作者:Talreja Sameer, Perry Sarah L, Guha Sudipto, Bhamidi Venkateswarlu, Zukoski Charles F, Kenis Paul J A
| 期刊: | Journal of Physical Chemistry B | 影响因子: | 2.900 |
| 时间: | 2010 | 起止号: | 2010 Apr 8; 114(13):4432-41 |
| doi: | 10.1021/jp911780z | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
