Combined tacrolimus and melatonin effectively protected kidney against acute ischemia-reperfusion injury.

他克莫司和褪黑素联合使用可有效保护肾脏免受急性缺血再灌注损伤

阅读:12
作者:Yang Chih-Chao, Sung Pei-Hsun, Chiang John Y, Chai Han-Tan, Chen Chih-Hung, Chu Yi-Ching, Li Yi-Chen, Yip Hon-Kan
Acute kidney injury (AKI) is commonly encountered and causes high mortality in hospitalized patients; however, effective therapies for AKI have still not been established. Accordingly, we performed a rodent model with acute renal ischemia-reperfusion (IR) and tested the hypothesis that combined tacrolimus and melatonin therapy could be superior to either one for protecting the kidney against IR injury. Adult-male SD rat (n = 30) were equally categorized into group 1 (receiving laparotomy only), group 2 (IR treated by 3.0 cc/normal-saline), group 3 [IR + tacrolimus/0.5 mg/kg by intravenous administration at 30 minutes and at days 1/2/3 after IR], group 4 (IR + melatonin/50 mg/kg by intra-peritoneal administration at 30 minutes and 25 mg/kg at days 1/2/3 after IR] and group 5 (IR + tacrolimus +melatonin). By day 3 after IR, the creatinine/BUN levels and ratio of urine protein to urine creatinine were highest in group 2, lowest in group 1 and significantly lower in group 5 than in groups 3/4 (all P < .0001), but they did not differ between the groups 3/4. The protein expressions of oxidative-stress (p47phox/NOX-1/NOX-2/NOX-4), upstream (TLR4/MAL/MyD88/TRAF6/ASK1/MKK4/MKK7/NF-κB) and downstream (IL-6/INF-γ/MMP-9/IL-1ß) inflammatory signaling, MAPK-family-signaling cascades(ERK1/2, JNK/p38/c-JUN), apoptotic/autophagic (p53/caspase 3/mitochondrial-Bax, ratio of LC3B-II/LC3B-I), and mitochondrial-damaged (cyclophilin D/cytochrome C/DRP1) biomarkers, and the expressions of inflammatory-immune cells (F4/80, CD14/CD3/CD8) as well as the kidney injured score exhibited an identical pattern of creatinine level (all P < .0001). In conclusion, combined tacrolimus and melatonin therapy was better than either single one on protecting the kidney functional and anatomical integrity against IR injury through suppressing inflammation and the generation of oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。