Principal component analysis (PCA) and k-nearest neighbor (kNN) can be applied to extract and compare activity distributions from electrocorticogram (ECoG) signals across recorded neural activity. Here, we present a protocol for recording ECoG activity from the neocortex of rats and applying PCA and kNN on the recorded data. This protocol allows for comparison between different types of cortical activity in a multidimensional space. For complete details on the use and execution of this protocol, please refer to Mellbin et al.(1).
Protocol for extracting and evaluating activity distributions in rat electrocorticograms with principal component analysis and k-nearest neighbor.
利用主成分分析和k近邻方法提取和评估大鼠脑电图活动分布的方案
阅读:5
作者:Mellbin Astrid, Rongala Udaya, Bengtsson Fredrik
| 期刊: | STAR Protocols | 影响因子: | 1.300 |
| 时间: | 2025 | 起止号: | 2025 Aug 18; 6(3):104041 |
| doi: | 10.1016/j.xpro.2025.104041 | 种属: | Rat |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
