Before synaptogenesis, early excitability implicating voltage-dependent and transmitter-activated channels is known to be crucial for neuronal development. We previously showed that preplate (PP) neurons of the mouse neocortex express functional Na(+) channels as early as embryonic day 12. In this study, we investigated the role of these Na(+) channels in signaling during early development. In the neocortex of embryonic-day-13 mice, activation of Na(+) channels with veratridine induced a large Ca(2+) response throughout the neocortex, even in cell populations that lack the Na(+) channel. This Na(+)-dependent Ca(2+) activity requires external Ca(2+) and is completely blocked by inhibitors of Na(+)/Ca(2+) exchangers. Moreover, veratridine-induced Ca(2+) increase coincides with a burst of exocytosis in the PP. In parallel, we show that Na(+) channel stimulation enhances glutamate secretion in the neocortical wall. Released glutamate triggers further Ca(2+) response in PP and ventricular zone, as indicated by the decreased response to veratridine in the presence of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and NMDA-receptor inhibitors. Therefore, the combined activation of the Na(+) channel and the Na(+)/Ca(2+) exchanger triggers Ca(2+) signaling in the PP neurons, leading to glutamate secretion, which amplifies the signal and serves as an autocrine/paracrine transmitter before functional synapses are formed in the neocortex. Membrane depolarization induced by glycine receptors activation could be one physiological activator of this Na(+) channel-dependent pathway.
Na+ channel-mediated Ca2+ entry leads to glutamate secretion in mouse neocortical preplate.
Na+通道介导的Ca2+内流导致小鼠新皮质前板谷氨酸分泌
阅读:3
作者:Platel J-C, Boisseau S, Dupuis A, Brocard J, Poupard A, Savasta M, Villaz M, Albrieux M
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2005 | 起止号: | 2005 Dec 27; 102(52):19174-9 |
| doi: | 10.1073/pnas.0504540102 | 种属: | Mouse |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
