This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion(®) 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion(®) membranes. The GO covering only 35% of the membrane surface increased the composite's wettability from hydrophobic (105.2°) to a highly hydrophilic angle (84.4°) while slightly reducing membrane swelling. Tensile tests depicted an increase in both the strain levels and tensile loads before breaking. The samples with GO presented remarkable mechanical properties when the annealing time and temperature increased; while the Nafion(®) control samples failed at elongations of 95% and 98%, their counterparts with GO on the surface achieved elongations of 248% and 191% when annealed at 80 °C and 110 °C respectively, demonstrating that the presence of GO mechanically stabilizes the membranes under tension. In exchange, the presence of GO altered the smoothness of the membrane surface going from an average 1.4 nm before the printing to values ranging from 8.4 to 10.2 nm depending on the annealing conditions which could affect the quality of the subsequent catalyst layer printing. Overall, the polymer's electrical insulation was unaffected, making the Nafion(®)-GO blend a more robust material than those traditionally used.
Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion(®) Membranes.
氧化石墨烯对Nafion(®)膜的力学和形貌性能的影响
阅读:8
作者:Ceballos-Alvarez Carlos, Jafari Maziar, Siaj Mohamed, Shahgaldi Samaneh, Izquierdo Ricardo
| 期刊: | Nanomaterials | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 Jan 3; 15(1):68 |
| doi: | 10.3390/nano15010068 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
