Relationship between the Polymeric Ionization Degree and Powder and Surface Properties in Materials Derived from Poly(maleic anhydride-alt-octadecene).

聚合物电离度与聚(马来酸酐-alt-十八烯)衍生材料的粉末和表面性质之间的关系

阅读:4
作者:Salamanca Constain H, Yarce Cristhian J, Zapata Camilo A, Giraldo Jonnathan A
Polymeric materials derived from poly(maleic anhydride-alt-octadecene)-here referred as PAM-18-have shown interesting properties that make them potential pharmaceutical excipients. In this work, eight polymers derived from PAM-18 were obtained using NaOH and KOH at 1:1; 1:0.75, 1:0.5, and 1:0.25 molar ratios. The resulting products were labeled as PAM-18Na and PAM-18K, respectively. Each polymer was purified by ultrafiltration/lyophilization, and the ionization degree was determined by potentiometric studies, which was related to the zeta potential. The structural characterization was performed using the Fourier transform infrared (FT-IR) espectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) techniques. The physical characterization was carried out by SEM, particle analysis, and humidity loss and gain studies; the surface studies were performed by the sessile drop method. PAM-18Na had ionization degrees of 95%, 63%, 39% and 22%, whereas those for PAM-18K were 99%, 52%, 35% and 20%, respectively. The results also showed that for higher inorganic base amounts used, the polymeric materials obtained possess high ionization degrees, which could form polymeric solutions or hetero-dispersed systems. Likewise, it was observed that for higher proportions of carboxylate groups in the polymeric structure, the capability to retain water is increased and, only can be eliminated by drying at temperatures greater than 160 °C. On the other hand, the modification of PAM-18 to its ionized forms led to the formation of powder materials with low flowability and surfaces that ranged from very hydrophobic to slightly wettable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。