BACKGROUND: For many years, increasing demands for fossil fuels have met with limited supply. As a potential substitute and renewable source of biofuel feedstock, microalgae have received significant attention. However, few of the current algal species produce high lipid yields to be commercially viable. To discover more high yielding strains, next-generation sequencing technology is used to elucidate lipid synthetic pathways and energy metabolism involved in lipid yield. When subjected to manipulation by genetic and metabolic engineering, enhancement of such pathways may further enhance lipid yield. RESULTS: In this study, transcriptome profiling of a random insertional mutant with enhanced lipid production generated from a non-model marine microalga Dunaliella tertiolecta is presented. D9 mutant has a lipid yield that is 2- to 4-fold higher than that of wild type. Using novel Bag2D-workflow scripts developed and reported here, the non-redundant transcripts from de novo assembly were annotated based on the best hits in five model microalgae, namely Chlamydomonas reinhardtii, Coccomyxa subellipsoidea C-169, Ostreococcus lucimarinus, Volvox carteri, Chlorella variabilis NC64A and a high plant species Arabidopsis thaliana. The assembled contigs (~181Â Mb) includes 481,381 contigs, covering 10,185 genes. Pathway analysis showed that a pathway from inositol phosphate metabolism to fatty acid biosynthesis is the most significantly correlated with higher lipid yield in this mutant. CONCLUSIONS: Herein, we described a pipeline to analyze RNA-Seq data without pre-existing transcriptomic information. The draft transcriptome of D. tertiolecta was constructed and annotated, which offered useful information for characterizing high lipid-producing mutants. D. tertiolecta mutant was generated with an enhanced photosynthetic efficiency and lipid production. RNA-Seq data of the mutant and wild type were compared, providing biological insights into the expression patterns of contigs associated with energy metabolism and carbon flow pathways. Comparison of D. tertiolecta genes with homologs of five other green algae and a model high plant species can facilitate the annotation of D. tertiolecta and lead to a more complete annotation of its sequence database, thus laying the groundwork for optimization of lipid production pathways based on genetic manipulation.
RNA-Seq transcriptomic analysis with Bag2D software identifies key pathways enhancing lipid yield in a high lipid-producing mutant of the non-model green alga Dunaliella tertiolecta.
利用 Bag2D 软件进行 RNA-Seq 转录组分析,鉴定出非模式绿藻杜氏藻高产脂质突变体中提高脂质产量的关键途径
阅读:5
作者:Yao Lina, Tan Tin Wee, Ng Yi-Kai, Ban Kenneth Hon Kim, Shen Hui, Lin Huixin, Lee Yuan Kun
| 期刊: | Biotechnology for Biofuels | 影响因子: | 6.100 |
| 时间: | 2015 | 起止号: | 2015 Nov 25; 8:191 |
| doi: | 10.1186/s13068-015-0382-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
