Lower energy consumption for producing feed pellets is an important part of the economy in the feed mill. The same is if physical pellet quality is degraded. The interest in using of novel ingredients is increasing due to requirements for the sustainable development goals. Defatted microalgae as by-product from biodiesel production is one of many novel ingredients. The purpose of this experiment was to understand how the addition of small amount of enzymes can reduce the flow resistance in the die during pellet discharge, without affecting the physical quality of pellets. Thus, possibly reduce the total consumption of electrical energy during compaction. Three enzymes, phytase, protease, xylanase, and combinations of those were added to defatted Desmodesmus subspicatus microalgae at 3 inclusion levels. Feed enzymes xylanase and phytase helped lowering the flow resistance of the material in the die. Reduction of flow resistance was in average 17 times lover when all three levels of enzyme phytase were used. The same was observed when 0.01% xylanase was added. All feed enzymes and their combination have evidently lowered underwater pellet swelling due to their hydrolytic activity at the surface of the microalgal particles. The hydrolytic activities of the feed enzymes did not affect hardness of the microalgal pellets. Contact angle degree between pellet surface and oil droplet was lowered when xylanase and protease was used at all three dosage levels. However, contact angle degree between pellet surface and water droplets was unaffected by the hydrolytic activity of enzymes.
The effect of feed enzymes phytase, protease and xylanase on pelleting of microalgal biomass.
饲料酶植酸酶、蛋白酶和木聚糖酶对微藻生物质制粒的影响
阅读:6
作者:Miladinovic Dejan Dragan, Storebakken Trond, Lekang Odd Ivar, Salas-Bringas Carlos
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2021 | 起止号: | 2021 Dec 18; 7(12):e08598 |
| doi: | 10.1016/j.heliyon.2021.e08598 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
