INTRODUCTION: Additive manufacturing (AM) enables the production of complex, patient-specific titanium implants. However, the as-built surfaces of AM parts often require postprocessing to enhance surface properties for optimal osseointegration. METHODS: This study investigates the effects of varying sandblasting pressures (2 bar vs. 6 bar) and subsequent acid etching (SAE) on the surface properties of additively manufactured and machined titanium (Ti-6Al-4V and commercially pure titanium (cp-Ti), respectively). While changes in surface roughness and morphology were assessed at different process stages using optical profilometry and scanning electron microscopy, the analyses of surface wettability (contact angle measurement) were focused on effects after SAE and during different storage conditions (ambient air vs. NaCl). The resulting differences in material properties were then evaluated for their biological impact on osteoblast compatibility. For this purpose, the parameters cell adhesion, morphology, and membrane integrity were investigated using confocal laser microscopy and LDH assay. RESULTS: Initial high roughness of AM titanium surfaces was decreased by sandblasting, while initial smooth machined surfaces (MM) increased in roughness. Acid etching introduced characteristic irregular patterns on the surface with only marginal consequences for the resulting overall roughness. While all surfaces demonstrated high hydrophilicity directly after etching, storage under ambient air increased hydrophobicity over time, while NaCl storage preserved hydrophilicity and improved biocompatibility marginally. Osteoblast adhesion and morphology were optimal only under no storage condition, with uncompromised membrane integrity. DISCUSSION: Notably, the biological consequences observed for MM and AM titanium were rather similar, considering the differences in used materials, production techniques, and subsequent surface morphologies. Carefully applied SAE can also optimize the surface characteristics of additive manufactured titanium for an improved implant performance, with storage conditions critically influencing surface wettability and bioactivity.
Effects of sandblasting and acid etching on the surface properties of additively manufactured and machined titanium and their consequences for osteoblast adhesion under different storage conditions.
喷砂和酸蚀对增材制造和机械加工钛的表面性能的影响及其对不同储存条件下成骨细胞粘附的影响
阅读:4
作者:Akbas Osman, Gaikwad Amit, Reck Leif, Ehlert Nina, Jahn Anne, Hermsdorf Jörg, Winkel Andreas, Stiesch Meike, Greuling Andreas
| 期刊: | Frontiers in Bioengineering and Biotechnology | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Aug 6; 13:1640122 |
| doi: | 10.3389/fbioe.2025.1640122 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
