BACKGROUND: In template-based modeling when using a single template, inter-atomic distances of an unknown protein structure are assumed to be distributed by Gaussian probability density functions, whose center peaks are located at the distances between corresponding atoms in the template structure. The width of the Gaussian distribution, the variability of a spatial restraint, is closely related to the reliability of the restraint information extracted from a template, and it should be accurately estimated for successful template-based protein structure modeling. RESULTS: To predict the variability of the spatial restraints in template-based modeling, we have devised a prediction model, Sigma-RF, by using the random forest (RF) algorithm. The benchmark results on 22 CASP9 targets show that the variability values from Sigma-RF are of higher correlations with the true distance deviation than those from Modeller. We assessed the effect of new sigma values by performing the single-domain homology modeling of 22 CASP9 targets and 24 CASP10 targets. For most of the targets tested, we could obtain more accurate 3D models from the identical alignments by using the Sigma-RF results than by using Modeller ones. CONCLUSIONS: We find that the average alignment quality of residues located between and at two aligned residues, quasi-local information, is the most contributing factor, by investigating the importance of input features used in the RF machine learning. This average alignment quality is shown to be more important than the previously identified quantity of a local information: the product of alignment qualities at two aligned residues.
Sigma-RF: prediction of the variability of spatial restraints in template-based modeling by random forest.
Sigma-RF:利用随机森林预测基于模板建模中空间约束的变异性
阅读:4
作者:Lee Juyong, Lee Kiho, Joung InSuk, Joo Keehyoung, Brooks Bernard R, Lee Jooyoung
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2015 | 起止号: | 2015 Mar 21; 16:94 |
| doi: | 10.1186/s12859-015-0526-z | 靶点: | IGM、IgM |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
