In order to represent the mechanical response laws of high-modulus asphalt pavement (HMAP) faithfully and objectively, the viscoelasticity of high-modulus asphalt mixture (HMAM) was considered, and the viscoelastic mechanical responses were calculated systematically based on moving load by numerical simulations. The performances of the HMAP in resistance to the deformation and the cracking at the bottom layer were compared with the ordinary asphalt pavement. Firstly, Lubao and Honeywell 7686 (H7686) were selected as the high modulus modifiers. The laboratory investigations of Asphalt mix-70 penetration, Asphalt mix-SBS (styrene-butadiene-styrene), HMAM-Lubao and HMAM-H7686 were carried out by dynamic modulus tests and wheel tracking tests. The conventional performances related to the purpose of using the HMAM were indicated. The master curves of the storage moduli were obtained and the viscoelastic parameters were fitted based on viscoelastic theories. Secondly, 3D pavement models based on moving loads for the viscoelastic structures were built using the non-linear finite element software ABAQUS. The wheel path was discretized in time and space to apply the Haversine wave load, and then the mechanical responses of four kinds of asphalt pavement were calculated. Finally, the sensitivity analysis was carried out. The results showed that the addition of the high modulus modifiers can improve the resistance to high-temperature rutting of the pavements. Except for the tensile strain and stress at the bottom of the underlayer, other responses decreased with the increases of the dynamic moduli and the change laws of the tensile strain and stress were affected by the range of the dynamic modulus. The tensile stress at the bottom of the asphalt layer would be too large if the modulus of the layer were too large, and a larger tensile strain would result. Therefore, the range of the modulus must be restricted to avoid the cracking due to excessive tension when using the HMAM. The resistance of the HMAP to deformation was better and the HMAP was less sensitive to load changes and could better withstand the adverse effects inflicted by heavy loads.
Viscoelastic Mechanical Responses of HMAP under Moving Load.
HMAP在移动载荷下的粘弹性力学响应
阅读:5
作者:Sun Yazhen, Gu Bincheng, Gao Lin, Li Linjiang, Guo Rui, Yue Qingqing, Wang Jinchang
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2018 | 起止号: | 2018 Dec 7; 11(12):2490 |
| doi: | 10.3390/ma11122490 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
