Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells

生物物理和可溶性因子的联合调节可诱导人类肌肉来源的干细胞向心肌细胞分化

阅读:6
作者:Jason Tchao, Lu Han, Bo Lin, Lei Yang, Kimimasa Tobita

Abstract

Cellular cardiomyoplasty has emerged as a novel therapy to restore contractile function of injured failing myocardium. Human multipotent muscle derived stem cells (MDSC) can be a potential abundant, autologous cell source for cardiac repair. However, robust conditions for cardiomyocyte (CM) differentiation are not well established for this cell type. We have developed a new method for CM differentiation from human MDSC that combines 3-dimensional artificial muscle tissue (AMT) culture with temporally controlled biophysical cell aggregation and delivery of 4 soluble factors (microRNA-206 inhibitor, IWR-1, Lithium Chloride, and BMP-4) (4F-AG-AMT). The 4F-AG-AMT displayed cardiac-like response to β-adrenergic stimulation and contractile properties. 4F-AG-AMT expressed major cardiac (NKX2-5, GATA4, TBX5, MEF2C) transcription factors and structural proteins. They also express cardiac gap-junction protein, connexin-43, similar to CMs and synchronized spontaneous calcium transients. These results highlight the importance of temporal control of biophysical and soluble factors for CM differentiation from MDSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。