Staged assembly of histone gene expression machinery at subnuclear foci in the abbreviated cell cycle of human embryonic stem cells.

人类胚胎干细胞缩短的细胞周期中,组蛋白基因表达机制在亚核焦点处分阶段组装

阅读:3
作者:Ghule Prachi N, Dominski Zbigniew, Yang Xiao-Cui, Marzluff William F, Becker Klaus A, Harper J Wade, Lian Jane B, Stein Janet L, van Wijnen Andre J, Stein Gary S
Human embryonic stem (hES) cells have an abbreviated G(1) phase of the cell cycle. How cells expedite G(1) events that are required for the initiation of S phase has not been resolved. One key regulatory pathway that controls G(1)/S-phase transition is the cyclin E/CDK2-dependent activation of the coactivator protein nuclear protein, ataxia-telangiectasia locus/histone nuclear factor-P (p220(NPAT)/HiNF-P) complex that induces histone gene transcription. In this study, we use the subnuclear organization of factors controlling histone gene expression to define mechanistic differences in the G(1) phase of hES and somatic cells using in situ immunofluorescence microscopy and fluorescence in situ hybridization (FISH). We show that histone gene expression is supported by the staged assembly and modification of a unique subnuclear structure that coordinates initiation and processing of transcripts originating from histone gene loci. Our results demonstrate that regulatory complexes that mediate transcriptional initiation (e.g., p220(NPAT)) and 3'-end processing (e.g., Lsm10, Lsm11, and SLBP) of histone gene transcripts colocalize at histone gene loci in dedicated subnuclear foci (histone locus bodies) that are distinct from Cajal bodies. Although appearance of CDK2-phosphorylated p220(NPAT) in these domains occurs at the time of S-phase entry, histone locus bodies are formed approximately 1 to 2 h before S phase in embryonic cells but 6 h before S phase in somatic cells. These temporal differences in the formation of histone locus bodies suggest that the G(1) phase of the cell cycle in hES cells is abbreviated in part by contraction of late G(1).

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。