PBLD enhances antiviral innate immunity by promoting the p53-USP4-MAVS signaling axis.

PBLD 通过促进 p53-USP4-MAVS 信号轴来增强抗病毒先天免疫力

阅读:6
作者:Chu Fengyun, Hou Peili, Zhu Hongchao, Gao Yan, Wang Xiaomeng, He Wenqi, Ren Juan, Li Min, Liu Yu, Chang He Daniel, Wang Hongmei, Gao Yuwei, He Hongbin
Phenazine biosynthesis-like domain-containing protein (PBLD) has been reported to be involved in the development of many cancers. However, whether PBLD regulates innate immune responses and viral replication is unclear. In this study, although it was found that the activity of PBLD extends to other PRRs, we focused on the RLR pathway activated via the p53-USP4-MAVS axis in response to virus infections. We found that PBLD deubiquitinates and stabilizes MAVS through ubiquitin-specific protease 4 (USP4) to promote antiviral innate immunity. Mechanistically, PBLD activates the transcription of USP4 via the upregulation of p53. USP4, which is a MAVS-interacting protein, substantially stabilizes the MAVS protein by deconjugating K48-linked ubiquitination chains from the MAVS protein at Lys461 during RNA virus infection. Most intriguingly, RNA virus-infected primary macrophages (peritoneal macrophages, PMs, and bone marrow-derived macrophages, BMDMs) and internal organ cells (lung and liver) from PBLD-deficient mice suppress the IFN-I response and promote viral replication. Notably, PBLD-deficient mice are more susceptible to RNA virus infection than their wild-type littermates. Our findings highlight a unique function of PBLD in antiviral innate immunity through the p53-USP4-MAVS signaling, providing a preliminary basis for research on PBLD as a target molecule for treating RNA virus infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。