Mammalian pre-implantation development is a complex process involving dramatic changes in the transcriptional architecture. We report here a comprehensive analysis of transcriptome dynamics from oocyte to morula in both human and mouse embryos, using single-cell RNA sequencing. Based on single-nucleotide variants in human blastomere messenger RNAs and paternal-specific single-nucleotide polymorphisms, we identify novel stage-specific monoallelic expression patterns for a significant portion of polymorphic gene transcripts (25âto 53%). By weighted gene co-expression network analysis, we find that each developmental stage can be delineated concisely by a small number of functional modules of co-expressed genes. This result indicates a sequential order of transcriptional changes in pathways of cell cycle, gene regulation, translation and metabolism, acting in a step-wise fashion from cleavage to morula. Cross-species comparisons with mouse pre-implantation embryos reveal that the majority of human stage-specific modules (7âout ofâ9) are notably preserved, but developmental specificity and timing differ between human and mouse. Furthermore, we identify conserved key members (or hub genes) of the human and mouse networks. These genes represent novel candidates that are likely to be key in driving mammalian pre-implantation development. Together, the results provide a valuable resource to dissect gene regulatory mechanisms underlying progressive development of early mammalian embryos.
Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing.
通过单细胞RNA测序揭示人类和小鼠早期胚胎中的遗传程序
阅读:7
作者:Xue Zhigang, Huang Kevin, Cai Chaochao, Cai Lingbo, Jiang Chun-yan, Feng Yun, Liu Zhenshan, Zeng Qiao, Cheng Liming, Sun Yi E, Liu Jia-yin, Horvath Steve, Fan Guoping
| 期刊: | Nature | 影响因子: | 48.500 |
| 时间: | 2013 | 起止号: | 2013 Aug 29; 500(7464):593-7 |
| doi: | 10.1038/nature12364 | 种属: | Human、Mouse |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
