Inflammation-associated perturbations of the gut microbiome are well characterized, but poorly understood. Here, we demonstrate that disparate taxa recapitulate the metabolism of the oxidized sugars glucarate and galactarate, utilizing enzymatically divergent, yet functionally equivalent, gud/gar pathways. The divergent pathway in commensals includes a putative 5-KDG aldolase (GudL) and an uncharacterized ABC transporter (GarABC) that recapitulate the function of their non-homologous counterparts in pathogens. A systematic bioinformatic search for the gud/gar pathway in gut microbes identified 887 species putatively capable of metabolizing oxidized sugars. Previous studies showed that inflammation-derived nitrate, formed by nitric oxide reacting with superoxide, promotes pathogen growth. Our findings reveal a parallel phenomenon: oxidized sugars, also produced from reactions with nitric oxide, serve as alternative carbon sources for commensal microbes. Previously considered a pathogen virulence factor, oxidized sugar metabolism is also present in specific commensals and may contribute to their increased relative abundance in gastrointestinal inflammation.
Convergent evolution of oxidized sugar metabolism in commensal and pathogenic microbes in the inflamed gut.
炎症肠道中共生微生物和致病微生物氧化糖代谢的趋同进化
阅读:9
作者:Levy Sophia, Jiang Angela K, Grant Maggie R, Arp Gabriela, Minabou Ndjite Glory, Jiang Xiaofang, Hall Brantley
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Jan 28; 16(1):1121 |
| doi: | 10.1038/s41467-025-56332-9 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
