Nanopatterning of signal-transmitting proteins is essential for cell physiology and drug delivery but faces challenges such as high cost, limited pattern variability, and non-biofriendly materials. Arthropods, particularly beetles (Coleoptera), offer a natural model for biomimetic nanopatterning due to their diverse corneal nanostructures. Using atomic force microscopy (AFM), we analyzed Coleoptera corneal nanocoatings and identified dimpled nanostructures that can transform into maze-like/nipple-like protrusions. Further analysis suggested that these modifications result from a temporary, self-assembled process influenced by surface adhesion. We identified cuticular protein 7 (CP7) as a key component of dimpled nanocoatings. Biophysical analysis revealed CP7's unique self-assembly properties, allowing us to replicate its nanopatterning ability in vitro. Our findings demonstrate CP7's potential for bioinspired nanocoatings and provide insights into the evolutionary mechanisms of nanostructure formation. This research paves the way for cost-effective, biomimetic nanopatterning strategies with applications in nanotechnology and biomedicine.
Smart Bio-Nanocoatings with Simple Post-Synthesis Reversible Adjustment.
具有简单后合成可逆调节功能的智能生物纳米涂层
阅读:7
作者:Kryuchkov Mikhail, Wang Zhehui, Valnohova Jana, Savitsky Vladimir, KaramehmedoviÄ Mirza, Jobin Marc, Katanaev Vladimir L
| 期刊: | Biomimetics | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 7; 10(3):163 |
| doi: | 10.3390/biomimetics10030163 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
