Glycoproteins of several viruses have the capacity to induce release of noninfectious, capsidless particulate structures containing only the viral glycoprotein. Such structures are often called subviral particles (SVP). Foamy viruses (FVs), a special type of retroviruses with a replication strategy combining features of both orthoretroviruses and hepadnaviruses, express a glycoprotein (Env) which has the ability to induce SVP release. However, unlike human hepatitis B virus, prototype FV (PFV) naturally secretes only small amounts of SVPs, because ubiquitination of the Env protein seems to suppress the intrinsic capacity for induction of SVP release. In this study, we characterized the structural determinants influencing PFV SVP release, examined the role of specific Env ubiquitination sites in the regulation of this process, and analyzed the requirement of the cellular vacuolar protein sorting (VPS) machinery for SVP egress. We observed that the cytoplasmic and membrane-spanning domains of both the leader peptide (LP) and the transmembrane (TM) subunit harbor essential as well as inhibitory domains. Furthermore, only ubiquitination at the most N-terminal lysine residues (K(14) and K(15)) in LP reduced cell surface expression and suppressed SVP release to wild-type levels. This suggests that interaction of Env with cellular components required for SVP release suppression is effective only when Env is ubiquitinated at these lysine residues but not at others. Finally, SVP release was sensitive to dominant-negative mutants of late components, but not early components, of the cellular VPS machinery. PFV therefore differs from hepatitis B virus in using the same cellular pathway for egress of both virions and SVPs.
Subviral particle release determinants of prototype foamy virus.
原型泡沫病毒的亚病毒颗粒释放决定因素
阅读:6
作者:Stange Annett, Lüftenegger Daniel, Reh Juliane, Weissenhorn Winfried, Lindemann Dirk
| 期刊: | Journal of Virology | 影响因子: | 3.800 |
| 时间: | 2008 | 起止号: | 2008 Oct;82(20):9858-69 |
| doi: | 10.1128/JVI.00949-08 | 种属: | Viral |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
