The familial hemiplegic migraine mutation R192Q reduces G-protein-mediated inhibition of P/Q-type (Ca(V)2.1) calcium channels expressed in human embryonic kidney cells.

家族性偏瘫性偏头痛突变 R192Q 降低了 G 蛋白介导的 P/Q 型 (Ca(V)2.1) 钙通道在人类胚胎肾细胞中表达的抑制作用

阅读:4
作者:Melliti Karim, Grabner Manfred, Seabrook Guy R
Familial hemiplegic migraine is associated with at least 13 different missense mutations in the alpha1A Ca(2+) channel subunit. Some of these mutations have been shown to affect the biophysical properties of alpha1A currents. To date, no study has examined the influence of such mutations on the G-protein regulation of channel function. Because G-proteins inhibit movement of the voltage sensor, we examined the effects of the R192Q mutation, which neutralizes a positive charge in the first S4 segment. Human wild-type (WT) or R192Q mutant channels were expressed in human embryonic kidney tsA-201 cells along with dopamine D2 receptors. Application of quinpirole induced fast (approximately 1 s), pertussis toxin-sensitive inhibition of alpha1A(WT) and alpha1A(R192Q) Ca(2+) currents, consistent with the activation of a membrane-delimited pathway. alpha1A(WT) Ca(2+) currents were inhibited by 62.9 +/- 0.9 % (n = 27), whereas alpha1A(R192Q) Ca(2+) currents were inhibited by only 47.9 +/- 1.8 % (n = 35; P < 0.001). Concentration-response analysis showed that only the extent of inhibition was affected, with no change in agonist potency (EC(50) = 1 nM). Prepulse facilitation, which is a characteristic of voltage-dependent inhibition, was also reduced by the R192Q mutation. However, the kinetics of facilitation and slow activation were not affected, suggesting that G-protein-Ca(2+) channel affinity was unchanged. These results show that the R192Q mutation reduces the G-protein inhibition of P/Q-type Ca(2+) channels, probably by altering mechanisms by which Gbetagamma subunit binding induces a change in channel gating. Altered G-protein modulation and the consequent reduced presynaptic inhibition may contribute to migraine attacks by favouring a persistent state of hyperexcitability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。