The molecular mechanisms involved in N-methyl-D-aspartate (NMDA)-induced cell death and Delta9-tetrahydrocannabinol (THC)-induced neuroprotection were investigated in vitro with an AF5 neural progenitor cell line model. By microarray analysis, Ywhah, CK1, Hsp60, Pdcd 4, and Pdcd 7 were identified as being strongly regulated by both NMDA toxicity and THC neuroprotection. The 14-3-3 eta (14-3-3eta; gene symbol Ywhah) and 14-3-3 zeta (14-3-3zeta; gene symbol Ywhaz) transcripts were deceased by NMDA treatment and increased by THC treatment prior to NMDA, as measured by cDNA microarray analysis and quantitative real-time RT-PCR. Other 14-3-3 isoforms were unchanged. Whereas up-regulation of 14-3-3zeta expression was observed 30 min after treatment with THC plus NMDA, down-regulation by NMDA alone was not seen until 16 hr after treatment. By Western blotting, THC increased 14-3-3 protein only in cells that were also treated with NMDA. Overexpression of 14-3-3eta or 14-3-3zeta by transient plasmid transfection increased 14-3-3 protein levels and decreased NMDA-induced cell death. These data suggest that increases in 14-3-3 proteins mediate THC-induced neuroprotection under conditions of NMDA-induced cellular stress.
Increases in expression of 14-3-3 eta and 14-3-3 zeta transcripts during neuroprotection induced by delta9-tetrahydrocannabinol in AF5 cells.
在 AF5 细胞中,Δ9-四氢大麻酚诱导的神经保护过程中,14-3-3 eta 和 14-3-3 zeta 转录本的表达增加
阅读:5
作者:Chen Jia, Lee Chun-Ting, Errico Stacie L, Becker Kevin G, Freed William J
| 期刊: | Journal of Neuroscience Research | 影响因子: | 3.400 |
| 时间: | 2007 | 起止号: | 2007 Jun;85(8):1724-33 |
| doi: | 10.1002/jnr.21304 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
